Пауль Хоровиц - Искусство схемотехники. Том 2 [Изд.4-е]
На схеме е показано применение npn-транзистора для переключения сильноточной нагрузки с помощью 5-вольтовой логики. Для коммутации больших токов используйте второй транзистор, как показано на схеме ж. На схемах з, и представлен способ управления нагрузками, подключенными к отрицательному полюсу источника питания. Высокий выходной уровень открывает pnp-транзистор и напряжение насыщения на коллекторе становится выше потенциала земли на величину падения напряжения на диоде. Ток эмиттера, а, следовательно, и максимальный ток коллектора (нагрузки), в схеме з определяется резистором (или положительным предельным током вентиля). В улучшенной схеме и в качестве буфера используется npn-повторитель; диод, включенный последовательно с выходом, удерживает нагрузку от перепадов выше земли. В обоих случаях максимальный ток нагрузки равен току эмиттера pnp-транзистора. Аналогичные схемы выпускаются в интегральном исполнении; они имеют КМОП/ТТЛ-совместимые входы и высоковольтные выходы с нагрузочной способностью по току до нескольких сотен миллиампер. Попробуйте применить элементы DS3687 (300 мА, — 56 В) фирмы National и распространенную серию UDN фирмы Sprague. В том случае когда вы используете слаботочную логику 4000В/74С с выходным током едва достигающим миллиампера, следует предусмотреть специальный мощный формирователь, даже для светодиода. На схеме к показан надежный сшестеренный буфер, управляющий светодиодом. Этот элемент может работать с отводом тока от 5 до 50 мА при напряжении питания от 5 до 15 В соответственно (нагрузочная способность выхода увеличивается с увеличением напряжения питания). В схемах л, м используются еще более мощные формирователи — 40107, содержащий мощный n-канальный МОП-транзистор на выходе с открытым стоком (отводящий ток составляет от 16 до 50 мА при напряжении питания от 5 до 15 В, соответственно), и DS3632 с мощным npn-формирователем по схеме Дарлингтона, рассчитанным на ток 300 мА. Можно, разумеется, всегда использовать и дискретные внешние транзисторы, как в схемах ж, и, но их применение ограничено базовым током менее миллиампера. Дискретный n-канальный МОП-транзистор в схеме д особенно хорошо работает со «слабенькими» КМОП-элементами.
Для управления удаленной нагрузкой или нагрузкой с независимой системой заземления лучше всего использовать оптрон. Этот прибор содержит светодиод (на стороне формирователя), который освещает фотоприемник (на стороне нагрузки). Оптроны выпускаются на различные скорости с различными конфигурациями входов/выходов (логический вход или просто светодиод; логический выход, выход с насыщенным транзистором (или схема Дарлингтона), выход с МОП-транзистором или выход с тиристором или симистором; см. рис. 9.26).
Типичным примером является распространенный элемент 4N36, показанный на рис. 9.15, н; этот элемент содержит простой светодиод на входе, npn-транзистор на выходе и может работать при напряжении 2500 В с временем переключения 4 мкс. Минимальный коэффициент передачи по току составляет 1.0, поэтому остается только пропустить через светодиод ток, равный максимальному выходному току. Существует ряд оптронов, которые используют логические уровни на входе и на выходе. Примером может служить оптрон 74OL6000 фирмы General Instrument; уровни на входе и выходе соответствуют уровням LS, время распространения составляет 60 нс (15 МГц), напряжение изоляции — 2500 В. В больших количествах его можно приобрести за 3 долл.
Наиболее простым способом управления нагрузкой переменного тока является способ, основанный, как показано на схеме о, на применении твердотельного реле. Реле этого типа представляет собой симистор с оптической связью с логическим входом и нагрузочной способностью по току от 1 до 40 А при коммутации нагрузки с переменным напряжением 115 В. Слаботочные реле в большом разнообразии выпускаются в корпусах типа DIP (например, серия «интегральных ключей» фирмы International Rectifier), в то время как более мощные реле выпускаются в виде прямоугольных блоков со сторонами, равными примерно 2 дюймам, предназначенных для установки на шасси. С другой стороны, нагрузки переменного тока можно коммутировать с помощью обычного реле, управляемого логическим элементом. При этом, однако, обязательно изучите технические данные, поскольку большинство реле, управляемых логикой, не способны коммутировать большие нагрузки переменного тока и вам понадобится логическое реле для того, чтобы управлять вторым более мощным реле. Почти во всех реле используется коммутация по типу «перехода через нуль» (или «нулевого напряжения»), которая в действительности является комбинацией включения по нулевому напряжению и выключения по нулевому току; это весьма полезная особенность, она предотвращает попадание выбросов и помех в шину питания. Много «мусора» на силовую шину переменного тока попадает от симисторных контроллеров, в которых коммутация осуществляется не в моменты перехода через нуль; таковы, например, регуляторы света с фазовым управлением для осветительных ламп, термостатов и двигателей. В качестве альтернативы оптической связи, использованной в схеме о, иногда можно встретить импульсный трансформатор для подвода импульсов запуска к симистору или тиристору.
Для управления 7-сегментными цифровыми индикаторами проще всего использовать элементы, объединяющие дешифратор и формирователи. Разнообразие их поразительно, — с формирователями для СИД и для жидкокристаллических индикаторов, с возможностями отвода и отдачи тока и т. п. Типичными примерами являются элементы «регистр/дешифратор/формирователи» типа 74НС4511 (СИД с общим катодом) и 74НС4543 для жидкокристаллических индикаторов. Более подробно об этом будет изложено в разделе по оптоэлектронике (разд. 9.10).
9.09. Сопряжение n-МОП БИСБольшинство схем большой и очень большой степени интеграции (БИС, СБИС) изготавливаются сейчас с использованием КМОП-технологии; они обладают такой же привлекательной способностью к сопряжению, как 5-вольтовые логические КМОП-вентили, и многими другими возможностями кристаллов средней степени интеграции (СИС), рассмотренными выше. Однако долгое время кристаллы БИС и СБИС изготавливались только на n-канальных МОП-транзисторах в режиме обогащения для того, чтобы упростить технологический процесс и получить более высокую плотность. Такая n-МОП-логика получила широкое распространение, поэтому важно знать, каким образом можно осуществить сопряжение n-МОП-логики и КМОП/ТТЛ и как обеспечить связь входов/выходов n-МОП-логики с внешними дискретными схемами. Большинство кристаллов n-МОП БИС совместимы с ТТЛ, тем не менее здесь есть несколько тонких моментов, которые следует рассмотреть.
Выходы n-МОП-элементов. На рис. 9.16 показана входная цепь интегральной схемы на n-канальных МОП-транзисторах, предназначенная для работы с ТТЛ. T1 — инвертор, а Т2 — истоковый повторитель с малыми геометрическими размерами, задающий необходимый ток от шины питания (резистор занял бы слишком много места, поэтому в качестве стоковой нагрузки всегда используется МОП-транзистор); часто используется и другой символ для изображения Т2. В современных схемах кремниевых вентилей пороговое напряжение входного транзистора находится в диапазоне от 1 до 1,5 В, поэтому вход можно непосредственно подключать к ТТЛ или КМОП-логике. В некоторых старых схемах порог может оказаться в диапазоне от 2 до 3 В, в этих случаях для управления от ТТЛ лучше использовать резистор 1-10 КОм, подключенный к шине питания; для КМОП обычно этого не требуется.
Рис. 9.16.Входная схема n-МОП-логики в режиме обогащения.
Выходы n-МОП-элементов. Выходная ступень 5-вольтовой n-МОП-логики показана на рис. 9.17.
Рис. 9.17. Выходная схема n-МОП-логики.
T1 представляет собой ключ, а Т2 — истоковый повторитель. Для того чтобы установить на выходе нижний уровень на затвор транзистора T1 подается напряжение +5 В; напряжение на выходе при этом будет ниже 0,5 В даже при отводе тока в несколько миллиампер.
Ситуация в состоянии высокого выходного уровня несколько ухудшается: при минимальном высоком выходном ТТЛ-уровне +2,4 В напряжение затвор-исток составляет всего 2,6 В, что приводит к сравнительно высокому значению сопротивления Rвкл; для более высоких выходных напряжений ситуация быстро ухудшается.